

Terms and Definitions

Abrasion (Tabor Abrasion)

Defined as the level of abrasive resistance, by how well the surface of a mat will hold up to heavy use. The less weight the sample loses, the more durable the product proves to be. touches a Conductive or Static Dissipative

Coefficient of Friction (COF)

Defined as the measure of traction provided by the surface of the mat. It is a measurement of force that must be exerted before an object slips. The higher the number, the better the traction. Recommend a COF of 0.50 in Dry areas and 0.25 in Wet areas.

Compression Deflection (CD)

Defined as a method of measuring the softness or comfort level of a sponge mat. The CD measures how much a person's foot sinks into the mat, and the higher the reading, the softer the mat. The results are affected by the thickness of the sponge backing and the flexibility of the surface material. Consider 0.20 to 0.50 as the ideal range.

Customisation

Defined as specific customer mat specifications and/or configurations, incl width, length, etc PVC entrance matting can be customised to conform to any shape, size and inlay design.

Density

Defined as the measure of a substances weight per unit volume in g/cm3, stiffness, impact strength, and other related properties.

Durometer

Defined as the measure of softness/hardness of moulded rubber and moulded PVC mats. The general rule is, the lower the durometer, the softer the mat. Our mats range between 45 to 70 Durometer, and considered the ideal range for moulded rubber mats.

Elongation at Break %

Defined as the measure of "ultimate elongation" or percentage increase in original length of a specimen when it breaks.

Electro Static Discharge (ESD)

Defined as when static builds up on a determined person's body and they touch another object, that charge is passed onto the object. This discharge can harm sensitive equipment and is drained off when the person steps on or mat.

Hardness (Shore A)

Defined as the rubber durometer hardness as measured on a Shore (TM, Wilson-Shore Instruments) "A" guage. Also refer IRHD. Higher numbers indicate harder materials, lower numbers indicate softer materials.

Life Expectancy

Defined as the term of use a mat will last. Life expectancy of a mat can vary greatly depending upon a diverse range of factors Including compound used, location, mat selection, foot traffic, exposure to grease, oils or chemicals, cleaning frequency and/or importantly their maintenance schedule.

Tear Strength

Defined as the force required to rupture a sample of stated geometry. Tear resistance is the resistance to growth of a cut or nick when Tension is applied to a specimen. PsiT.

Tensile Strength

Defined as the force in pounds per square inch (Psi) required to cause the rupture of rubber. The higher the Psi the stronger the mat.

Working Temperature

Defined as the maximum and minimum Temperature limits within which a mat can function in a given application. Lowering temperature results in loss of resilience, increased hardness, & brittleness.

OHM

Defined as a measure of resistance. The higher an ohm reading on a conductive mat, the more difficult it is for the static electric charge to go through the mat and out the ground. Therefore, the lower the ohm reading, the more conductive the material. **Range: Conductive = 1 x 10/3 to 1 x 10/6 ohms Range: Dissipative = > 1x10/6 to 1x10/10 ohms**

PROPERTIES OF VARIOUS RUBBERS

ELASTOMER RUBBER COMPOUNDS TYPES AND REFERENCES							
General Description	Chemical Description	Abbreviation (ASTM 1418)	ISO/DIN 1629	Other Trade names & Abbreviations	ASTM D2000 Designations		
Nitrile	Acrylonitrile- butadiene rubber	NBR	NBR	Buna-N	BF, BG, BK, CH		
Hydrogenated Nitrile	Hydrogenated Acrylonitrile- butadiene rubber	HNBR	(HNBR)	HNBR	DH		
Ethylene- Propylene	Ethylene propylene diene rubber	EPDM	EPDM	EP, EPT, EPR	BA, CA, DA		
Fluorocarbon	Fluorocarbon Rubber	FKM	FPM	Viton [®] , Fluorel [®]	нк		
Chloroprene	Chloroprene rubber	CR	CR	Neoprene	BC, BE		
Silicone	Silicone rubber	VMQ	VMQ	PVMQ	FC, FE, GE		
Fluorosilicone	Fluorosilicone rubber	FVMQ	FVMQ	FVMQ	FK		
Polyacrylate	Polyacrylate rubber	ACM	ACM	ACM	EH		
Ethylene Acrylic	Ethylene Acrylic rubber	AEM	AEM	Vamac ®	EE, EF, EG, EA		
Styrene- butadiene	Styrene-butadiene rubber	SBR	SBR	SBR	AA, BA		
Polyurethane	Polyester urethane / Polyether urethane	AU / EU	AU / EU	AU / EU	BG		
Natural rubber	Natural rubber	NR	NR	NR	АА		

Vamac ® and Viton ® are registered trademarks of E. I. du Pont de Nemours and Company or affiliates.

Fluorel ® is a registered trademark of Dyneon LLC

Very Good = 1 Good = 2		,	Average = 3		Роо	Poor = 4		Temperature in °F					
Basic Property		NBR	HNB	R EPDM	FKM	CR	ACM	AEM	SBR	AU/EI	U VMQ	FVMQ	NR
Economy of Materia	al	1	4	2	3	2	3	4	1	3	3	4	1
Compression Set Re	sistance	1	1	1	1	2	4	2	2	3	2	2	1
Resilience (Rebound	1)	2	2	2	2	2	3	2	2	2	2	2	1
Tear Strength		2	1	2	2	2	3	2	3	2	4	3	1
Heat Aging Resistan	ce	3	2	2	1	3	1	1	3	1	1	1	3
Ozone Resistance		4	2	2	1	2	2	1	4	1	1	1	4
Resistance to Oil & O	Grease	2	2	4	1	2	1	3	4	2	3	1	4
Fuel Resistance		4	3	4	2	4	1	4	4	3	4	2	4
Water Swell Resista	nce	2	2	1	2	3	4	2	1	4	1	1	1
Gas Impermeability		2	2	3	2	2	3	2	3	2	4	4	3
Dynamic Service / A Res.	brasion	2	2	2	3	2	2	2	1	1	4	4	1
High Temperature -	Standard	212	300	300	390	250	300	300	212	175	450	400	220
High Temperature -	Special	250	-	-	-	-	-	-	-	-	480	-	-
Low Temperature -	Standard	-22	- 22	-60	5	-40	-60	-40	-50	-60	-75	-75	-60
Low Temperature -	Special	-60	-40	-	-30	-	-	-	-	-	-	-	-

General Properties of Elastomer Classes & Rubber Compounds:

Due to the number of interacting forces, it is STRONGLY RECOMMENDED THAT YOUR ELASTOMER SELECTION BE RIGOROUSLY TESTED IN THE ACTUAL APPLICATION, performance assumptions must be checked so that you are certain that all variables have been carefully considered.

NATURAL RUBBER (NR)				
	Temperature Range (dry heat)			
	low	high		
Natural rubber is a product coagulated from the latex of the	- 60 °F	220 °F		
compression set, high tensile strength, resilience, abrasion and tear resistance, good friction characteristics, excellent bonding capabilities to metal substrate, and good vibration	-51 °C	104 °C		
	Application Advantages			
dampening characteristics.	» excellence compression set			
	» good resilience and abrasion » good surface friction properties			
Primary Uses	Application Disadva	intages		
O-rings, rubber seals and custom molded rubber				
components for:	» poor resistance to attack by			
» rubber to metal bonded vibration isolators and mounts	petroleum oils			
» automotive diaphragms	» poor ozone, UV resistance			
» FDA applications for food and beverage seals				
FLUOROSILICONE (FVMQ)				
	Temperature Range	e (dry heat)		
	low	high		
Fluorosilicones combine most of the attributes of silicone	-75 °F	450 °F		
with resistance to petroleum oils and hydrocarbon fuels. Low physical strength and abrasion resistance combined	-59 °C	232 °C		
with high friction limit fluorosilicone to static seals. Fluorosilicones are used primarily in aircraft fuel systems.	Application Advantages			
	» excellent extreme temperature			
	properties			
	 » excellent compression set resistance » very clean, low odor and taste 			
Primary Uses	Application Disadva	intages		
O-rings, rubber seals and custom molded rubber components for: » seals (static) for extreme temperature applications » food applications » medical devices » FDA applications	» typically not good for dynamic seals due to friction properties and poor abrasion resistance			

SILICONE (VMQ)

	Temperature Range (dry heat)		
Silicone is a semi-organic elastomer with outstanding			
resistance to extremes of temperature with corresponding	low	high	
resistance to compression set and retention of flexibility.			
Silicone elastomers provide excellent resistance to ozone,	-75 °F	450 °F	
oxygen, and moisture.	-59 °C	232 °C	
Low physical strength and abrasion resistance combined			
with high friction properties limit silicone to static seal	Application Advant	ages	
applications.			
Silicone utilizes a flexible siloxane backbone rather than a	 » excellent extreme temperature properties » excellent compression set resistance » very clean, low odor and taste 		
carbon backbone like many other elastomers and has very			
low glass transition temperatures.			
Primary Uses	Application Disadvantages		
O-rings, rubber seals and custom molded rubber			
components for:	» typically not good	t for dynamic seals	
» seals (static) for extreme temperature applications	due to friction pror	ortion and noor	
» food applications	due to friction properties and poor		
» medical devices	abrasion resistance		
» FDA applications			

POLYURETHANE (AU) (EU)

	Temperature Range (dry heat)		
Millable polyurethane exhibits excellent abrasion resistance and tensile strength as compared to other elastomers providing superior performance in hydraulic applications with high pressures, abrasive contamination and shock loads. Fluid compatibility is similar to that of nitrile at temperatures up to approximately 175 °F. At higher temperatures, polyurethane has a tendency to soften and lose both strength and fluid resistance advantages over other elastomers.	low	high	
	- 60 °F - 51 °C	175 °F 79 °C	
	Application Advanta	Application Advantages	
	 » excellent strength and abrasion resistance » good resistance to petroleum oils » good weather resistance 		
Primary Uses	Application Disadvantages		
O-rings, rubber seals and custom molded rubber components for: » seals for high hydraulic pressure » highly stressed parts subject to wear	» poor resistance to water » poor high temperature capabil		

STYRENE BUTADIENE (SBR)						
	Temperature Range	e (dry heat)				
Styrene-Butadiene (SBR) is a copolymer of styrene and butadiene.	low	high				
SBR compounds have properties similar to those of natural	- 50 °F	212 °F				
rubber. SBRs primary custom molded application is the use	-46 °C	100 °C				
major of the industry usage coming from the Tire Industry. SBR features excellent resistance to brake fluids, and good	Application Advanta	ages				
water resistance.	 » good resistance to brake fluids » good resistance to water 					
Primary Uses	Application Disadva	ntages				
O-rings, rubber seals and custom molded rubber components for: » hydraulic brake systems seals and diaphragms » plumbing applications	 » poor weather resistance » poor petroleum oil and solvent resistance 					
ETHYLENE ACRYLIC (AEM)						
	Temperature Range (dry heat)					
	low	high				
Ethylene-acrylic (Vamac [®]) is a terpolymer of ethylene,	- 40 °F	300 °F				
site. It exhibits properties similar to those of Polyacrylate,	- 40 °C	149 °C				
but with extended low temperature range and with enhanced mechanical properties.	Application Advantages					
Ethylene-acrylic offers a high degree of oil, ozone, UV and	» excellent vibration dampening					
weather resistance.	» excellent heat aging characteristics					
	» good dynamic property retention over a wide temperature range					
	» resistance to transmission fluids,					
	water, glycol mixtures, and alkalies					
Primary Uses	Application Disadvantages					
O-rings, rubber seals and custom molded rubber						
components for:	n not recommended for success to					
» Automotive sealing applications.	» not recommended for exposure to fuel, brake fluid, aromatic hydrocarbons or phosphate esters.					
» Power steering seals						

POLYACRYLATE (ACM)

	_		
Polyacrylates are copolymers of ethyl and acrylates which	Temperature Range (dry heat)		
exhibit excellent resistance to petroleum fuels and oils and			
can retain their properties when sealing petroleum oils at	low	high	
continuous high temperatures up to 300 °F. These			
properties make polyacrylates suitable for use in	-60 °F	300 °F	
automotive automatic transmissions, steering systems, and	-51 °C	149 °C	
other applications where petroleum and high temperature			
resistance are required.	Application Advant	ages	
Polyacrylates also exhibit resistance to cracking when			
exposed to ozone and sunlight.	» petroleum fuel and oil resistance		
Polyacrylates are not recommended for applications where	» resists flex cracking		
the elastomer will be exposed to brake fluids, chlorinated	» good ozone resistance		
hydrocarbons, alcohol, or glycols.	» good heat resistance		
Primary Uses	Application Disadva	antages	
Q-rings, rubber seals and custom molded rubber	» poor compression set performance		
components for:	relative to NBR		
» Automotive transmissions	» lesser water resis	tance and low	
» Automotive charsing systems	temperature performance than some		
» Automotive steering systems	other elastomers		
NEOPRENE / CHLOROPRENE (CR)			

Temperature Range (dry heat)					
low	high				
- 40 °F	250 °F				
- 40°C	121°C				
Application Advantages					
Ihesion qualities to metals for pplications. ealing refrigeration fluids due to o Freon® and ammonia.> moderate resistance to petroleum oils >> good resistance to ozone, UV, oxygen >> excellence resistance to Freon® and ammonia					
			Application Disadvantages		
			» moderate water resistance » not effective in solvents environments		
	Temperature Range low - 40 °F - 40 °C Application Advanta » moderate resistar oils » good resistance to » excellence resista ammonia Application Disadva » moderate water r » not effective in so environments				

FLUOROCARBON (FKM)

Fluorocarbon exhibits resistance to a broader range of chemicals combined with very good high temperature	Temperature Range (dry heat)		
properties more so than any of the other elastomers. It is the closest available approach to a universal elastomer for	low	high	
sealing in the use of o-rings and other custom seals over	5 °F	390 °F	
other types of elastomers.	- 15 °C	199 °C	
Fluorocarbons are highly resistant to swelling when			
exposed to gasoline as well as resistant to degradation due	Application Advanta	iges	
to expose to UV light and ozone.			
When exposed to low temperatures, fluorocarbon	» excellent chemical resistance		
elastomers can become quite hard (-4 °F) but can be	» excellent heat resi	istance	
serviceable at low temperatures, although FKM compounds	» good mechanical properties		
are not recommended for applications requiring good low	» good compression	set resistance	
temperature flexibility.			
In addition to standard FKM materials, a number of special	Application Disadva	ntages	
materials are available with differing monomer			
compositions and fluorine content (65% to 71%) for	» poor low tempera	ture flexibility	
improved low temperature, high temperature, or chemical	» poor resistance to	hot water and	
resistance performance.	steam		
Fluorocarbons exhibit low gas permeability making them	a. 1.6		
well suited for hard vacuum service and many formulations	Modifications		
are self-extinguishing. FKM materials are not generally	» differing monomer compositions and fluorine content (65% to 71%) for		
recommended for exposure to hot water, steam, polar			
solvents, low molecular weight esters and ethers, glycol	improved low temperature, high temperature, or chemical resistance performance		
based brake fluids, or hot hydrofluoric or chlorosulfonic			
acids.			
Primary Uses	Specialized Applicat	ions	
O-rings, rubber seals and custom molded rubber			
components for			
» Automotive fuel handling			
» Aircraft engine seals			
» High temperature applications requiring good			
compression set			
» General industrial seals and gaskets			
	» degree of huorina	uon (A, B, F, GB, GF,	
	GFLI, GBLI, GLI, EI	P) skuus su sf	
	» copolymer or terp	olymer of	
	Tuorinated hydroca	rbon monomers	

ETHYLENE-PROPYLENE (EPDM)		
	Temperature Range	e (dry heat)
Ethylene-propylene compounds are prepared from	low	high
ethylene and propylene (EPM) and usually a third monomer	-60 °F	300 °F
(EPDM). These compounds are used frequently to seal in brake systems, and for sealing hot water and steam	-51 °C	149 °C

Application Advantages

» good heat resistance

resistance

Modifications

compounds

Application Disadvantages

» excellent weather resistance

» excellent chemical resistance

» poor petroleum oil and solvent

» sulfur-cured and peroxide-cured

ethylene and propylene EPM

» third comonomer EPDM, copolymer

» good low temperature flexibility

brake systems, and for sealing hot water and steam. Ethylene propylene compounds have good resistance to mild acids, detergents, alkalis, silicone oils and greases, ketones, and alcohols. They are not recommended for applications with petroleum oils, mineral oil, di-ester lubricants, or fuel exposure.

Ethylene Propylene has gained wide seal industry acceptance for its excellent ozone and chemical resistance properties and is compatible with many polar fluids that adversely affect other elastomers.

EPDM compounds are typically developed with a sulfur or peroxide cure system. Peroxide-cured compounds are suitable for higher temperature exposure and typically have improved compression set performance.

Primary Uses	Specialized Applications
O-rings, rubber seals and custom molded rubber components for: » Water system seals, faucets, etc. » Brake systems » Ozone exposure applications » Automotive cooling systems » General Industrial Use	 » glycol-based brake system seals » FDA approved applications » NBR NSF standard 61 for potable water applications » NBR WRc, KTW water applications

HYDROGENATED NITRILE (HNBR)						
	Temperature Rang	e (dry heat)				
	low	high				
	-22 °F -30 °C	300 °F 149 °C				
HNBR is created by partially or fully hydrogenating NBR. The hydrogenating process saturates the polymeric chain	Application Advant	ages				
with accompanying improvements to the ozone, heat and aging resistance of the elastomer and improves overall mechanical properties. HNBR, like Nitrile, increasing the acrylonitrile content increase resistance to heat and petroleum based oils and	 » excellent heat and oil resistance » improved fuel and ozone resistance (approximately 5X) over Nitrile » abrasion resistance 					
fuels, but decreases the low temperature performance.	Application Disadva	antages				
	 » increased cold flow with hydrogenation » decreased elasticity at low temperatures with hydrogenation over standard nitrile 					
Primary Uses	Modifications					
O-rings, rubber seals and custom molded rubber components for: » Oil resistant applications » Oil well applications » Fuel systems, automotive, marine, and aircraft » General Industrial Use	» acrylonitrile cont to 50% » peroxide vs. sulfu	ent (ACN) from 18% Ir donor cure system				

NITRILE (NBR)

	Temperature Range (dry heat)	
Nitrile is the most widely used elastomer in the seal		high
industry. The popularity of nitrile is due to its excellent -22 °F	=	212 °F
resistance to petroleum products and its ability to be -30 °C	C	100 °C
compounded for service over a temperature range of -22°F		
to 212°F. Applic	Application Advantages	
Nitrile is a copolymer of butadiene and acrylonitrile.		· ·
Variation in proportions of these polymers is possible to » exce	» excellent compression set, » superior tear resistance	
accommodate specific requirements. An increase in supe		
acryionitrile content increases resistance to neat plus » abra		
petroleum base olis and fuels but decreases low	cation Disadva	ntages
specifications require nitrile compounds with low		intages
acrylonitrile content to insure low temperature » poor	» poor weather resistance	
performance. » mod	» moderate heat resistance	
Nitrile provides excellent compression set, tear, and	_	
abrasion resistance. The major limiting properties of nitrile	Modifications	
are its poor ozone and weather resistance and moderate	donitrilo conto	nt (ACN) from 19%
heat resistance, but in many application these are not	to 50%	
limiting factors.	» peroxide vs. sulfur donor cure system	
» XNB	BR improved w	ear resistance
formu	formulation	
Primary Uses Specia	Specialized Applications	
O-rings, rubber seals and custom molded rubber		
components for: » NBR	» NBR NSF standard 61 for potable	
» Oil resistant applications water	water applications	
» Low temperature applications » NBR	» NBR WRc, KTW water applications	
» Fuel systems, automotive, marine, and aircraft » NBR	» NBR FDA white list compounds	
» General Industrial Use		

Elastomer Classes & Rubber Compounds Class and Type Details:Due to the number of interacting forces, it is STRONGLY RECOMMENDED THAT YOUR ELASTOMER SELECTION BE RIGOROUSLY TESTED IN THE ACTUAL APPLICATION, performance assumptions must be checked so that you are certain that all variables have been carefully considered. Specific properties of the compound will vary with the formulation or ingredient used to make the compound in addition to the base polymer.